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In  this paper we consider the axisymmetric flow of a rotating stratified fluid into a 
point sink. Linear analysis of the initial value problem of flow of a linearly stratified 
fluid into a point sink that is suddenly switched on shows that a spatially variable 
selective withdrawal layer is established through the outward propagation of inertial 
shear waves. The amplitude of these waves decays with distance from the sink; the 
e-folding scale of a given mode is equal to the Rossby radius of that mode. As a 
consequence, the flow reaches an asymptotic state, dependent on viscosity and 
species diffusion, in which the withdrawal-layer structure only exists for distances 
less than the Rossby radius based on the wave speed of the lowest mode, R,. If the 
Prandtl number, Pr, is large, then the withdrawal layer slowly re-forms in a time that 
is O(S; K-,), such that it extends out much farther to a distance that is O(R, Pr 8; G2) 
rather than O(R,). 

Because there is no azimuthal pressure gradient to balance the Coriolis force 
associated with the radial, sinkward flow, a strong swirling flow develops. Using 
scaling arguments, we conclude that this swirl causes the withdrawal-layer thickness 
to grow like (ft);, such that eventually there is no withdrawal layer anywhere in the 
flow domain. Scaling arguments also suggest that this thickening takes place in 
finite-size basins. 

These analyses of swirl-induced thickening and diffusive thinning can be combined 
to yield a classification scheme that shows how different types of flows are possible 
depending on the relative sizes of a parameter J ,  which we define asfQ(NF.v)-l, E (the 
Ekman number fh'v-l), and Pr. 

1. Introduction 
It is well known that sink flows in rotating or stratified fluids tend to be jet-like 

in that the main part of the sinkward flow tends to come from narrow layers, either 
at the same level as the sink as in a strongly stratified fluid (Yih 1980) or along the 
rotational axis in a strongly rotating flow (Pa0 & Shih 1973). The former case is 
generically known as selective withdrawal in that in a strongly stratified fluid one can 
'select' the strata of fluid at  the sink level; this behaviour is often used to help 
manage reservoir water quality (Imberger 1980). 

3PU, UK. 
t Present address : Robert Hooke Institute, Clarendon Laboratory, Parks Road, Oxford, OX1 
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A novel application of selective withdrawal is described by Boyce, Robertson & 
Ivey (1983) who considered the possibility of selectively withdrawing 4 “C bottom 
water from Lake Ontario for use as cooling water to air-condition Toronto in 
summer. Their analysis, based on experimental and theoretical work by Whitehead 
(1980) and Kranenburg (1979,1980) suggested that the so-called ‘FREECOOL’ scheme 
would not work because rotational effects would greatly increase the vertical extent 
of the withdrawal layer. The reasons for this were first laid out by Whitehead (1980) 
who analysed the flow of linearly stratified fluid into a point sink. Making 
approximate use of the rotating hydraulic control theory advanced by Whitehead & 
Porter (1977), Whitehead suggested that the withdrawal layer would first be 
established as in a non-rotating fluid? (assuming that N ,  the buoyancy frequency, is 
much greater thanf, the Coriolis parameter). Later, owing to conservation of angular 
momentum, a swirling flow would develop that would require that fluid entering the 
sink have an ever increasing elevation head. Whitehead carried out several 
experiments to test his fully nonlinear, inviscid theory ; generally the theoretical and 
experimental trends were in qualitative agreement. Most importantly, as predicted 
theoretically, the withdrawal-layer thickness increased significantly during all of his 
experiments. 

In  contrast to Whitehead’s (1980) results, in their experimental study of selective 
withdrawal from a rotating channel, Monismith & Maxworthy (1989) failed to find 
any withdrawal-layer thickening. Like Whitehead, they used a point sink ; however, 
their sink was mounted on one of the channel walls. They did observe, and analyse 
using a simple description of the evolution of the vertical vorticity field, the spinup 
of a strong recirculating flow. This flow developed because the emptying of the 
withdrawal layer acted to compress filaments of planetary vorticity, thus generating 
anticyclonic relative vorticity. This vorticity was diffused vertically by viscosity, 
leading to a apparent thickening of the withdrawal layer. 

McDonald & Imberger (1992) analysed a flow related to that of Monismith & 
Maxworthy (1989) : the flow into a line sink in a finite-depth, finite-width, and 
infinitely long duct. They confirmed the importance of Kelvin-wave/Poincar&wave 
dynamics suggested by Monismith & Maxworthy (1989) based on Gill’s (1976) 
analysis of the Rossby adjustment problem in a channel. In agreement with 
Monismith & Maxworthy (1989), they did not find any withdrawal-layer thickening 
despite the fact that non-zero velocities parallel to the sink developed as the flow 
evolved. This result differs from that found for flow into a line sink in an unbounded 
fluid, for which McDonald & Imberger (1991) calculated a spatially growing 
withdrawal layer. 

I n  this paper, to clarify the nature of rotational effects on selective withdrawal, in 
particular to answer the question of when are spatial and temporal thickening of the 
withdrawal layer likely to be observed, we reconsider the problem analysed by 
Whitehead (1980) : flow into a point sink. To simplify the analysis, we consider the 
deceptively simple case of a finite-depth, infinite-horizontal-extent fluid domain. We 
start, in $2, by looking a t  the inviscid, linear initial value problem associated with 
impulsively initiating the sink flow. The resulting solution, obtained by modal 
expansions and Laplace transforms, shows much what one would expect : the 
establishment of a withdrawal layer by long inertial-internal waves, which can be 
dubbed ‘inertial shear waves ’ by analogy with their non-rotating counterparts (Pao 
& Kao 1974). However, the asymptotic form taken by the transient solution is not 

t However, the no-rotation limit of Whitehead’s analysis was not correct; see $3.  
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entirely expected in that it shows that the withdrawal layer vanishes at  a distance 
of order Nhl f from the sink, where h is half the depth of the fluid. In $3, we next 
address the issue of temporal changes in withdrawal-layer thickness due to swirl 
using scaling arguments. In $4 we discuss the role played by viscous and diffusive 
effects. We note that all of our analyses are predicted on the assumptions that N > f ,  
i.e. that the withdrawal layer is likely to extend horizontally rather than vertically 
(McDonald & Imberger 1991), and that transport to the sink from the interior takes 
place in the body of the fluid rather than in a thin Ekman layer on the basin bottom 
(as in Hide 1968). In  $5 we develop a classification scheme delineating when viscous 
and diffusive effects are important. In $6 we apply our results to real reservoir flows. 

2. The linear initial value problem: shear waves and selective withdrawal 
We consider the flow induced in a linearly stratified fluid rotating at angular speed 

if about the z-axis by an impulsively started point sink. The sink is located at (z, r )  = 
( 0 , O )  and between horizontal free-slip planes at z = & h. The problem geometry is 
sketched in figure 1. In order to linearize the governing equations, we assume that 
the Froude number of the flow is small everywhere except in the immediate vicinity 
of the sink (Lawrence 1980; Imberger, Thompson & Fandry 1976; Ivey & Blake 
1985). Likewise, if we assume that the horizontal scales of motion of interest are 
greater than the fluid depth (Pa0 & Kao 1974), we can neglect (for the moment -we 
will consider this point later) non-hydrostatic pressures. Finally, we neglect viscous 
and diffusive effects for the present time as well ; they will be directly accounted for 
in $4. 

In terms of the stream function, defined by the relations 

the equation governing the axisymmetric, small-amplitude motions associated with 
the establishment of a selective withdrawal layer is 

where N is the buoyancy frequency ( = -p-lpz);. The stream function $ is subject to 
the condition at r = 0 that 

Q 
r+o 2x  
lim $Z(r, z ,  t )  = --H(t) S(z), 

where H ( t )  is the Heaviside step function. Thus, 

lim 1, $z(r, z, t )  2x d~ = 2x[$(0,  z, t )  - $(o, -h, t ) ]  = - QH(t) ~ ( x ) ,  
r+0 

so that 
L? L 

If we set +(O,  - h, t )  = QH(t)/47c, this can be written as 

(3) 

Q + ( O ,  z ,  t )  = --H(t) sgn (2). 4n 
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Axis of rotation 

4 2 ,  r, 1) 

FIGURE 1. Definition sketch. 

If the potential flow contribution to 9 is subtracted out, the remaining baroclinic 
portion of the stream function can then be expanded using ordinary modal 
expansions (Gill 1980) : 

The sine expansion is used because sines are the appropriate eigenfunctions for a 
constant-N stratification (Gill 1980). Because u - u - f,; i.e. u has the same 
( r ,  t)-dependence as do the f,. 

Making the following definitions : 

substituting the modal expansions into the field equation, and dropping the stars 
from dimensionless variables gives the radial wave equation for each of the modal 
amplitudes : 

The initial and boundary conditions on fn can be obtained using the orthogonality 
of the modes to find that 

1 
nn f,(O, t )  = ---H(t). (9) 

Equation (8) is solved by means of Laplace transforms. Taking the Laplace 
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transform of (8) gives the ordinary differential equation for the transformed variable 
L(s, r )  (s is the argument of the transform) : 

which has the solution (given in Abramowitz & Stegun 1965) 

= ArKl[ (s2+ i)+nnr]. (11) 

K ,  is the modified Bessel function of the first kind. A is found by applying the initial 
condition, and noting that 

so that 

Thus, the solution for f n ( s ,  r )  is 

A = - (s2+ 1)"s. 

Inverting the Laplace transform gives 

where the operator 2-' is used to signify the inverse Laplace transform and g(s) is 
the function 

Using the convolution theorem for Laplace transforms and the fact that  9 ( f ' ( t ) )  = 
s Y ( f ) ,  the solution for fn(r, t) can thus be written as (since G(0) = 0) 

where P-l(g(s)) = G(t). The formal solution can be completed by looking for the 
inverse transform of g(s)  in standard tables and finding that 

1 G(t) = 0, 0 6 t < nm, 

Substituting this expression for G into the expression for f, gives the full solution for 
the ( r ,  t)-dependence of the modal amplitudes as 
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FIGURE 2. Radial structure of stream function atft = 4 for rotating and non-rotating withdrawal 
layers for n = 1. Both have been made dimensionless by their values a t  the origin (which are the 
same) and the radial distance is scaled by 7c-l. 
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FIGURE 3. Time variation of fl(r, t )  a t  r = 1 for n = 1 in the presence of rotation. 

This solution, normalized by j , ( O )  is plotted on figure 2 for t = 4 and n = 1 ,  For 
comparison, the non-rotating solution given by Lawrence (1980), 

f n ( r ,  t )  = 0, 0 < t < nxr: 

is also plotted. In both cases, at a given point in the fluid there is no response of the 
velocity field to the sink until a shear wave with dimensionless speed (nx)-l travelling 
outwards from the sink has reached that point. As plotted in figure 3 for r = 7t-I and 
n = 1 ,  asymptotically, the rotating solution shows decaying inertial oscillations at  
fixed r .  In  both the rotating and non-rotating cases, the flow is singular at the wave 
front, essentially an artifact of the point-sink condition at r = 0, and of the neglect 
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FIQURE 4. The asymptotic ( t  + C O )  form of the inviscid flow field in terms of the dimensionless 
stream function. 

of non-hydrostatic pressures. While a finite-radius sink could be included in the 
analysis to eliminate the singularity, it would greatly complicate the inversion of the 
Laplace transform while adding little information about flow behaviour away from 
the wave front. 

The most interesting part of the solution is found by examining the asymptotic 
value off,(r, t )  as t +. co. This is easily done by letting s +. 0 in (16) and then inverting 
the approximation tof ,  directly to find 

f J r ,  t) % -rK,(nxr). (20) 

This solution for ?,b is plotted in figure 4 (including 10 modes) for r < 1. The most 
salient feature of this flow field is that the withdrawal structure existing near r = 0 
virtually disappears by r = 1,  i.e. a distance from the sink of approximately 3 times 
the Rossby radius of the lowest mode (7c-l in terms of the present set of dimensionless 
variables). In contrast, in the non-rotating case, the withdrawal-layer structure 
established at the sink is maintained throughout the fluid. 

Strictly speaking, this limiting process for finding the large-time behaviour of the 
Laplace transform is valid only when the singularities of the Laplace transform do 
not lie on the imaginary axis. Such is not the case here. However, this problem can 
be eliminated with the inclusion of a small amount of linear drag, e ;  i.e. by replacing 
a/at by a/at+e. Such a transformation lifts the singularities off the imaginary axis, 
making the above limiting process valid. The limit e + 0 can then be taken to obtain 
the inviscid solution (McDonald 1992). By substituting (20) into the modal 
expansion, we arrive at  an asymptotic expression for the dimensionless steady-state 
flow. 

The reason for this loss of selective withdrawal is clear from the asymptotic 
behaviour of K,. Since 

for r B 1, we see that nth mode's contribution to the velocity field decays 
exponentially with an e-folding scale equal to (nx)-l, the dimensionless Rossby 

rK,(nnr) iz: (~/2n);e-~"' (21) 
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radius for that mode. Thus, as first described by McDonald & Imberger (1991), we 
must conclude that the vertical scale of the withdrawal layer set up by outward- 
propagating inertial shear waves increases with distance from the sink. This is 
because the farther we are from the sink, the smaller the contribution to the velocity 
field made by the higher modes. 

Finally, for completeness, we can write asymptotic expressions for the dimensional 
forms of ~ and u, valid for t % f -l,  by reconstruction of the modal expansions and 
by the use of (1) which connects u and +. These are 

and 

$=-- ;:(2h -+- A%.=, fr 5 K ,  ($)sin(?)) 

(23) 

The slow convergence of the series expression (23) for u for r x 0 is entirely the result 
of the assumed delta-function sink structure. Much more rapid convergence of this 
series could be obtained by assuming a sink distribution appropriate to the 
withdrawal-layer velocity structure that is established near the sink (Monismith, 
Imberger & Billi 1988). 

3. Evolution of the swirl: to select or not to select? 

computed from the 0-momentum equation 
In the context of the linear, inviscid analysis given in $2, the swirl, u, can be easily 

ut = -fu. (24) 

v = -ftus, (25) 

Integrating (24) with respect to t and assuming that v = 0 at  t = 0, we find that 

where us is the steady velocity field given in (23). However, as v grows with time, the 
flow field is not steady. In fact, (25) implies that the radial pressure gradient near the 
sink must also increase with time since for t S=- f - l ,  

Thus, the perturbation pressure also grows with time. Since the perturbation 
pressure is derived from deflection of the isopycnals, we might suppose that this 
implies that the withdrawal layer must grow in thickness with time. Indeed, this is 
exactly the conclusion drawn by Whitehead (1980) from his analysis of the present 
flow. 

We can examine this conclusion using scaling arguments. First consider the non- 
rotating case: we assume that the withdrawal-layer thickness near the sink, Si, is 
initially set by an inertia-buoyancy balance, wherein a radial pressure gradient 

p-'pr - N2S:/R (27) 

uu, - Q2qZ R-3. (28) 

(R is the appropriate radial lengthscale) is balanced against inertia 
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1 0.20 1.45 10 1.26 0.52 0.5 1.16 4.4 700 
2 0.20 1.45 20 0.63 0.52 1.0 0.58 2.2 700 
3 0.20 1.45 60 0.21 0.52 2.1 0.19 1.5 700 
4 2.50 1.45 355 0.04 1.20 18 0.41 1.1 700 

TABLE 1. Whitehead (1980)'s experimental data 

Following Ivey & Blake's (1985) argument, we expect that the withdrawal layer is 
established within a distance of order S of the sink so that R - 8, implying that 

8, - (&IN);. (29) 
As suggested by Whitehead, the magnitude of the swirl is of paramount 

importance for the rotating case. It would appear that our ability to use the linear 
estimate (25) to calculate w would be limited in that w appears to increase without 
bound and thus it should be necessary to account for advection of v. On the other 
hand, if (25) was a valid basis for scaling v, we would find that 

v - &ft/Sr. (30) 
As discussed in the Appendix, this scaling is, in fact, correct for a constant-thickness 
withdrawal layer, since for us - r- l ,  the two horizontal advection terms in the 0- 
momentum cancel identically. This temporally increasing velocity implies that near 
the sink, where the withdrawal layer is established, 

while a comparison of the relative sizes of the centripetal and advective accelerations 
shows that 

Thus, for t %. f -l,  the flow near the sink must be in cyclostrophic balance, i.e. 

v2 1 
- M -pr .  
r P  

Keeping the scaling of the pressure gradient specified by (27), assuming again that 
R - 8, (the subscript r refers to rotation), but now assuming the appropriate radial 
momentum balance is (32) and noting that 

v - ftQld,Z, 

we find that 

so that 

f 't2Q2Q5 - N2Sr, 

8, - ( f t ) ;  (&/N) i .  
Equation (30) implies that SJS, - ( f t ) ?  

(33) 

(34) 

(35) 

Thus, not only should we expect the withdrawal layer to grow with distance because 
of rotation, but also with time. The appearance ti growth in (35) rather than ti as 
predicted by Whitehead is because he assumed line-sink behaviour with u - Q(SY~)-~, 
where ro was the radius of the outlet, rather than point-sink dynamics with u - &S2 
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(see Ivey & Blake 1985). We expect that Whitehead’s analysis should be valid when 
r,, > 8,. 

As noted by Whitehead, the dominance of the cyclostrophic pressure balance over 
geostrophy (in the radial direction) is appealing in that it means that the withdrawal- 
layer behaviour is consistent with the Bernoulli equation interpretation that is 
traditionally given to inertial layers (see e.g. Yih 1980): The drawndown of 
isopycnals near the sink represents the conversion of elevation head into velocity 
head that is often found in open channel flow. Since the Coriolis force does not enter 
the Bernoulli equation directly (it acts at right angles to streamlines), this 
interpretation would not hold had radial geostrophy determined the withdrawal- 
layer thickness. 

To what extent can the analysis given above be tested against experimental data ? 
The only data set we are aware of is that of Whitehead, which is summarized in table 
1 (we have only chosen those experiments that geometrically correspond to the 
problem at hand). Whitehead’s results are plotted in figure 5, which it can be seen 
that the scaling given by (35) does an excellent job at collapsing the experimental 
data. Using these data, the coefficient of proportionality for (35) appears to be 
approximately 0.7. It should be pointed out that in the case of Whitehead’s 
experiments, one would not have expected to see much spinup due to withdrawal- 
layer depletion because, in all cases, the time required to empty the withdrawal 
layer, and hence create vertical vorticity through the compression of planetary 
vortex filaments, was somewhat longer than the time the experiments were run. 

Another facet of this description that can be checked is that (25) implies that v is 
positive since us is negative. While the data given by Whitehead cannot be used to 
confirm this prediction, the bead-streak image given in Monismith & Maxworthy 
(1989) do show a region of counterclockwise flow around the sink which is imbedded 
in the otherwise clockwise flow spun up by the withdrawal-layer flow. In their case, 
the sink was placed a small distance from the wall, allowing a small amount of swirl 
to develop. Apparently, this swirl was not sufficient, however, to lead to any 
observable thickening of the withdrawal layer. 

An important aspect of (35) is that it predicts no selective withdrawal if 8, - h. 
That is, when t = T,, the time by which selective withdrawal has ended because of 
rotation : 

(ft$ ( Q l N ) ;  - h, 

or f T, - iVh3Q--l, 

which is equivalent to the statement that 

f T, - Fr-l,  

where the Froude number Fr is defined as 

Fr = QN-1h-3. (37) 

Suppose now that the fluid domain is a cylinder of radius R,. According to our 
solution above (e.g. given by (22) and (23)), we would expect that the ‘rear’ wall will 
have little effect on the ‘ steady-state ’ flow so long as 

The major effect of the rear wall will be to cause a drawndown of the water level as 
fluid is removed from the cylinder. This naturally defines an emptying time 
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Thus if T,  + TE, the fluid density structure will change as though stratification were 
not present, i.e. as if there were no selective withdrawal. Thus, for this to be the case 
we must specify that 

or equivalently that (39) 
as assumed above. Thus, our scaling arguments predict that a large finite-radius 
basin will not experience significant selective withdrawal during the time it is 
emptied. 

4. Effects of viscosity and species diffusion 
The linear inviscid analysis can be extended to include diffusion of momentum and 

of species while retaining the modal structure of the flow. However, we must retain 
the assumptions that the top and bottom boundaries are slip boundaries and allow 
weak fluxes to pass through them. In this case (lo), which describes the radial 
structure of a Laplace-transformed modal stream function, becomes 

where Pr is the Prandtl number = V / K  (v is the kinematic viscosity and K the thermal 
diffusivity) and E ,  is the ‘modal Ekman number’ which is defined by the expression 

En = ( v / f )  (nx/h)’. (41) 

E = v/ f h2 = 6E/h2, (42) 

The modal Ekman number, which is just the product of the Ekman number, E 

and (nn)’, is the square of the ratio of the Ekman-layer thickness, S,, to the vertical 
lengthscale of the nth mode. 

The solution to (40) is similar to that given above: 

f, = - (h,/s) rK,(h, nnr). (434 
Here the effects of diffusion and rotation are expressed by the function 

A general inversion of (43) is complicated, so it is preferable to  look at the long-time 
behaviour of the solution. However, for reasons that will become apparent below, 
some care needs to be taken when evaluating limiting forms of (43) and its inverse. 

The first case is to let s+O while keeping P r  and E fixed. Velocity profiles for 
E = 0.1 and Pr = 1, 10 and 100 at  r = 1 are shown in figure 6. While it is not shown, 
the inviscid velocity profile is indistinguishable from the Pr = 1 case. In  contrast, the 
velocity profile for Pr = 10 is much more like that seen in the absence of rotation, i.e. 
it shows selectivity. This behaviour is seen in the asymptotic limit off, which, for 
P r+  co (and E fixed), is 

i.e. the non-rotating solution of Lawrence (1980). More generally, keeping both E and 
Pr fixed and letting s+O gives for the Laplace inversion 

f, N - (nn)-l; (44) 
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FIGURE 6. Dimensionless asymptotic ( t +  co) velocity profiles a t  r = 1 for E = 0.1, and various 
values of Pr. Each profile has been normalized by u(z = 0, r = 1) and the profiles for Pr = 10 and 
100 have been shifted to the right by 1.25 and 2.5 respectively. 

which is identical to (20) except for the rescaling of the radial distance by the factor 

which for En < 1,  is just Pr-i. Thus, the steady form of the rotationally decaying 
withdrawal layer would appear to extend out much farther than predicted in $2. 

However, an alternative limiting solution obtained by first letting E + 0 while 
keeping Pr fixed, and then taking s + 0 gives the inviscid solution described in $2. 
The question is : which limit is correct ? The answer would appear to lie in what 
timescale is of interest. Ultimately, the diffusive solution must be realized if Froude 
number is sufficiently small (Imberger et al. 1976). This is because the ‘steady’ 
inviscid solution does not give a steady density field since w =+ 0. The inviscid limit 
appears to be appropriate for 

1 4 t 4 E,1, (47) 
because in this case, we can neglect all the diffusive contributions to (43), while still 
considering t to be large enough for the small-s limit of the solution to be valid. For 
longer times, such that 

(48) 
viscous effects must be included, while diffusion of species can still be neglected. This 
gives the velocity field described by (44). Finally, for 

Eil  < t < PrEG1, 

Pr E i l  < t (49) 
the full diffusive solution given by (45) will hold. Thus, in summary, it would appear 
that, like the non-rotating case, if Pr > 1 the inviscid flow described in $2, which is 
first established by shear waves, will evolve further until it reaches a diffusive 
equilibrium with a withdrawal layer that is thinner a t  fixed r than if there were no 
diffusion. 

Physically, the balance of forces and effects involved with this collapse appears to 
be as follows : After the inviscid/non-diffusive flow is established, the density 
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Time h7a Force balance Layer scale 

1 4 t < E;' 1 fv - PJPo S - fRW1 
vt -fu 
Pt - PoN2wlg 

fu - vv,, 
Pt - poN2wlg 

E;' Q t < PrE';' (SIN); fv - PrlPo collapses 

PrE;' 6 t P& fv  PJPO 6 - f R Pr4N-l 

TABLE 2 .  Force balances and withdrawal-layer thicknesses (linear theory) 

perturbation increases as the swirl increases. As the swirl develops, it is also diffused 
by viscosity. This causes the required density perturbation to decrease; since 
the density perturbation is proportional to the isopycnal displacement, i.e. the 
withdrawal-layer thickness, the withdrawal layer must thin. Ultimately, in the 
absence of advection of either species or momentum, the withdrawal layer becomes 
sufficiently narrow for species diffusion to end the gsowth of the density perturbation 
and thus finally allow the withdrawal flow to become steady. For very large values 
of Pr, this will result in a layer that is at most as thick in the body of the fluid as it 
is a t  the sink itself where the dominant force balance may still be between inertia and 
buoyancy. This discussion is summarized in table 2 where we present a compilation 
of the various timescales and their associated force balances and withdrawal-layer 
thicknesses. 

It should be noted that (49) and the equations that precede it involve En rather 
than E .  This means that with E fixed, a t  time t ,  all modes with Eil < t will show 
viscous influence. Fortunately, this is not a severe constraint : if the withdrawal layer 
has finite thickness 6 a t  the sink due to inertial effects, then the largest value of En 
that need be considered, the one that will set the time for which the inviscid solution 
given in $2 is useful, will be the one for which 

En z ~ ( f # ) - '  = (S,/Si)2. (50) 

That is, n is chosen such that the Ekman number of the nth mode is comparable to 
the square of the ratio of the Ekman-layer thickness to the withdrawal-layer 
thickness. This is because the finite thickness of the withdrawal layer near the sink 
reduces the amplitudes of the higher modes relative to those values appropriate to 
a delta-function sink (Imberger et al. 1976). We discuss below the implications of 
viscous and diffusive effects for the long-time behaviour of the flow. 

5. Discussion and classification of flows 
The analyses presented in the previous three sections have delineated a series of 

different dynamical balances including advection, rotation and diffusive effects. To 
proceed further we need to decide on what types of flow evolution are possible. Thus, 
we wish to consider how the different flow descriptions might be combined to yield 
a comprehensive view of sink flow in a rotating stratified fluid. In  particular, how do 
we reconcile the picture of a rotationally thickening layer given in $3  with the 
viscously/diffusively collapsing layer described in $4 ? The key to answering this 
question is to realize that even when viscosity and diffusion are important in the 
interior of the domain (away from the sink), they cannot make the withdrawal layer 
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thinner in the interior than it is at  the sink. Since the speed of the inertial shear waves 
is proportional to the vertical wavelength and it is this vertical wavelength that 
locally determines the withdrawal-layer thickness it follows that when steady state 
is achieved, say through diffusion of such waves by viscosity, the withdrawal-layer 
thickness cannot decrease with distance from the sink. 

First, to ensure a layer that is initially inertial, the withdrawal layer must be 
established before viscous effects become important. Given that the appropriate 
timescale for establishment of an inertial layer is O(A7-l) near the sink and that the 
viscous timescale is O(S," rl), we require that 

N&," v-1 > 1. 
If we define the parameter 

J = &f(Nhv)-l ,  

we find that the necessary condition is 

J > fiN-:E:. (53) 

Next, in order to see the inviscid flow analysed in $ 2 ,  we must retain an inertial 
layer near the sink while the flow away from the sink is established. This means that 
the viscous timescale must be greater than the time required for the appropriat,e 
internal wave mode to travel the characteristic dimension of the basin (Ivey & Blake 
1985). In  this case, the setup time is identical for all modes since the appropriate 
lengthscale for each mode is its Rossby radius, so the necessary condition is now 

f S f v - 1  > 1 ,  

J >&. 
which, expressed in terms of J ,  is 

(54) 

(55) 

Once the initial spatially growing withdrawal layer has been established, our 
analysis (992-4) suggest two possibilities : the layer grows with time near the sink due 
to rotation, and hence in the interior as well; the layer in the interior collapses 
vertically such that at any particular distance from the sink, the local layer thickness 
becomes smaller with time until it reaches a limiting scale set by diffusion of species 
and momentum and by the withdrawal-layer thickness near the sink. If we combine 
these two possible descriptions, we must infer that if the viscous/diffusive effects 
remain unimportant near the sink, the withdrawal layer grows as described in $ 3  
with the interior flow matching it either with the geostrophic balance described in $2, 
or with the viscous/diffusive balance discussed in 94. By looking at the various force 
balances and timescales, we can determine what type of flow should arise, depending 
on J ,  E ,  and Pr. 

First, to guarantee a rotational layer near the sink, vv,, < v2r-l. This gives 

(ft)"Nq v-1 > I .  (56)  

Since f t  > 1 for the cyclostrophic balance to hold in the first place, we find that if the 
layer is initially inertial, it will also be cyclostrophic for all f t  > 1 .  

The cyclostrophic balance will continue until the layer has grown to  fill the entire 
depth, i.e. for t < T,. Thus, the importance of viscosity and species diffusion to the 
evolving flow will depend on the extent to which the layer can fill the basin depth 
before viscous and or diffusive effects act. In  the limit where the vertical lengthscale 
of the flow is h, we find that viscous/diffusive effects will never be important if 

f T ,  < fh2v-l  = E-l. (57) 

This criterion gives the condition J > 1 (58) 
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as defining the boundary between flows for which viscosity may or may not be 
important. If J < 1, it is easily shown that the transition time at  which viscous 
effects become important is O(f- lJ2E-l) .  Diffusive effects in the interior will come 
into play during the spinup and thickening of the withdrawal layer if 

f T,  < f h2K1  = E-lP r ,  (59) 

or if J < Pr-'. (60) 

Thus, in order that the interior flow be able to make the transition from geostrophy 
to a viscous-diffusive equilibrium, there is the auxiliary condition that Pr-l > Ex. 
This flow is slightly different from that discussed in $4 in that the layer thickness is 
set by the dynamics of the flow near the sink. 

Summarizing the above results, we can describe several different regimes of flow 
behaviour when Pr-l> Ei:  

(i) J > 1 : the flow is initially inertial and remains inviscid until selectivity is lost 
due to rotation ; 

(ii) 1 > J > Pr-l : the flow is inertial/rotational near the sink, but the spinup of 
the interior flow is modified by viscosity; 

(iii) Pr-l > J > Ei:  the flow is inertial/rotational near the sink, but the spinup of 
the interior flow is modified by viscosity and species diffusion; 

(iv) Ei > J >fiN-iEi: the flow is inertial/rotational near the sink but viscosity 
modifies the establishment of the flow ; 

(v) fiN-;& > J :  the flow is never inertial (this case is discussed in $4). If Pr-' < 
Ei, regime (iii) flows cannot be realized, but the rest of the classification 
scheme holds. 

If we again look at  Whitehead's (1980) experiments (see table l ) ,  we find that his 
experiments fall on the boundary separating regimes (i) and (ii). Thus, our 
classification scheme would lead us to conclude that the withdrawal layers he 
produced should have been inertial initially, and, as he observed, should have 
subsequently thickened owing to rotation. Moreover, as Whitehead suggested 
through scaling, viscosity probably had little effect on the flow. 

6.  Discussion 
To put our results in perspective, we consider the application of our results to flows 

in large lakes and reservoirs. We limit our attention to the inviscid, non-diffusive case 
only. A large lake might have the following characteristic parameter values (for mid- 
latitudes) : N N lo-' s-l (roughly 1 "C m-l) ; f = s-l; Q - 1 m3 s-l; H - 100 m; 
and R, - 10 km. If we estimate a value of lo-* m2 s-l for an effective value of 
viscosity in the hypolimnion of a lake (Ivey & Imberger 1976), J - 1 and NH/ f N 

10 km - R, so that we would conclude that the withdrawal flow should develop first 
as described by the linear inviscid model and then eventually lose much of its 
structure altogether due to swirl-induced withdrawal-layer thickening. 

For a smaller lake or reservoir, R, might be smaller than the lowest-mode Rossby 
radius Nh/ f, in which case our analyses do not strictly apply. However, it  seems 
likely that some of the spatial thickening discussed in $2 might be observed if R, is 
comparable to, although less than, A%/ f. Moreover, since 8, is at most O ( H ) ,  temporal 
thickening of the withdrawal layer might still be expected to occur much as discussed 
in $3  given that the flow dynamics that determines S, is, in large part, local to the 
sink. This seems confirmed by the fact that Whitehead's experiments were performed 



Selective withdrawal in a rotating stratified j lu id 303 

in a tank in which the Rossby radius of the lowest mode was varied from being 
roughly equal to the tank radius (experiment 1) to being much greater than the tank 
radius (experiment 4), yet there is no discernable difference in their dimensionless 
layer growth rates. 

This potential importance of rotation to selective withdrawal for moderate size 
lakes and reservoirs also suggests an important design rule for selective withdrawal 
intakes: in a large lake, in order to  maintain any ‘selectivity’, the withdrawal 
structure must be placed within one or two Rossby radii of the lowest internal wave 
mode of the shore. In  general, in order to have the ability to produce as narrow a 
layer as possible and so gain the maximum degree of control of the outflow, the 
structure should be positioned so as to prevent the development of swirl around the 
structure. Practically speaking, for water supply reservoirs this would generally 
mean positioning the structure close to the dam wall if bottom water is to be 
selectively withdrawn, given that the water depth is usually greatest near the dam. 

Another flow of practical interest is that of a sink flow induced by a bubble plume 
in a small reservoir with H = 10 m and R, = 500 m. The strength of this sink varies 
with height, effectively appearing like a distributed form of the point sink analysed 
above (McDonald 1992). Will the variation in sink strength be felt over the entirety 
of the reservoir Z In this case, NH/ f = 1000 m, so that much of the detailed structure 
of the plume’s entrainment flow might disappear due to rotation. The importance of 
rotation at  these scales is not unexpected. Indeed Kranenburg’s (1979) analysis of 
rotating sink flow was originally motivated by the observation that significant swirl 
developed around bubble plumes in basins of approximately this scale. 

Lastly, the question of stability of the withdrawal flows discussed in this paper is 
open, although given that neither Kranenburg (1979, 1980) nor Whitehead (1980) 
commented on the development of instabilities in the asymmetric cases they studied, 
it seems likely that none occurred and thus that some withdrawal flows might be 
stable. More discussion of rotational instabilities can be found in Gill (1980). 

7. Conclusions 
The analysis given herein suggests both by formal solution and by scaling 

arguments, that rotational effects on axisymmetric selective withdrawal might be 
substantial, including a spatially variable withdrawal layer that decays with 
distance from the sink such that for distances of order Nh/ f, there is no withdrawal 
layer. Examination of the inviscid swirling flow that evolves for large times (t 9 f - l )  
suggests that under many conditions of interest, all ‘selectivity ’ of the withdrawal 
layer may be lost. In this case, the withdrawal-layer thickness grows like (ft);. For 
example, finite-size basis that are several times wider than the Rossby radius of the 
lowest-mode interval wave will most likely experience little, if any, selective 
withdrawal as they empty. According to linear analysis, this picture may be modified 
by the presence of diffusion of species and of momentum ; for Pr 9 1, the withdrawal 
layer collapses with time such that a narrow withdrawal layer is re-established by 
t = O(S; K - ~ ) .  However, in general, the evolution of the flow depends on the parameter 
J defined in $5, and a variety of flows are possible depending on the relative sizes of 
J ,  E ,  the Ekman number and Pr, the Prandtl number. 
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Appendix. An exact solution for the &momentum equation 
In $3, an estimate for the swirl (6) velocity, w was given by the expression (30): 

- &(f t ) l6 ( t ) r ,  

where s(t) is the withdrawal-layer thickness. In  this section, we justify this scaling by 
obtaining an exact solution of the 6-momentum equation that has the form given by 

We consider the unsteady, vertically uniform flow inside a withdrawal layer of 
constant thickness &(t). The sinkward flow is assumed to only vary slowly in time (as 
a result of withdrawal-layer thickening - represented here by allowing 6 to be a 
function of time) according to the relation: 

(30). 

u = -Q/%S(t)r .  (A 1)  

In this flow, the vertical velocity is identically zero and thus, neglecting viscosity, the 
8-momentum equation simplifies to the form 

at = -.( f+;+;). 

The steady form of this equation was used by Whitehead (1980) in his analysis. 
The neglect of wv, can be justified by noting that the vertical velocity w, should be 

O(QA-l),  where A is the area of the basin, in order that the density field only change 
slowly in response to the evolving swirl. This estimate for w gives wv, = O(&VA-~S-~)  
as opposed to uw, being O(&vS3) .  This simplifies that wv, -4 uv, and can thus be 
neglected since WV,/UV, = O(S2AP1) and 6 < AH. Spigel & Farrant (1984)'s experiments 
and analysis indicate that this scaling gives a good description of the flow field for 
non-rotating inertial withdrawal flow. In addition, Monismith & Maxworthy (1989) 
successfully used the same vertical velocity field as Spigel & Farrant to model spinup 
in a rotating selective withdrawal flow. Finally, this assumption would seem to be 
consistent with Whitehead's description of the withdrawal layer (p. 129) that 'There 
was little change in depth [of the layer] away from the sink'. 

An exact solution to (A 2)  is easily obtained by noting that ifv - r-l ,  then the last 
two terms on the right-hand side of (A 2) cancel identically leaving the simple spinup 
balance : 

If withdrawal-layer thickness is 

then the solution to (A 3) is 

a v p t  = -fu. (A 3) 

@) = sO(ft)" (A 4) 

v = Q ( f t ) / ( ( l - n ) Z n S ( t ) r ) .  (A 5 )  

As discussed in the 93, a balance of the radial pressure gradient and the centripetal 
acceleration gives n = g. 

This solution has a simple interpretation in terms of conservation of angular 
momentum. As Whitehead (1980) argued, at time t ,  we see at r a ring of fluid that 
was initially at  a distance ro where 

(A 6) 

Equation (A 6) is obtained by integration of (A 1).  Thus, using (A 5) we can write 
that 

2: = ;r2+&t/(2zS(l -n)). 

rv = l fy2-ifrz 2 0 2 .  (A 7) 
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However, the angular momentum, H,, of the fluid ring as measured in an inertial 
reference frame, is 

(A 8) 
which is constant. Thus, the swirl described by (30) or (A 5 )  develops because, as fluid 
rings move towards the sink, they must develop additional positive 8-velocity in 
order to conserve angular momentum. 

H,  = rv+gfr2 = i f r t ,  
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